Проблемы создания термоядерных установок. Проблемы управления термоядерным синтезом (УТС). Почему так сложно

В статье рассмотрены причины, по которым до настоящего времени управляемый термоядерный синтез не нашел промышленного применения.

Когда в пятидесятых годах прошлого века Землю потрясли мощные взрывы термоядерных бомб , казалось, что до мирного использования энергии синтеза ядер осталось совсем немного: одно или два десятилетия. Для подобного оптимизма имелись и основания: с момента применения атомной бомбы до создания реактора, вырабатывающего электричество, прошло всего 10 лет.

Но задача обуздания термоядерного синтеза оказалась необычайно сложной. Десятилетия проходили одно за другим, а доступа к неограниченным запасам энергии так и не удалось получить. За это время человечество, сжигая ископаемые ресурсы, загрязнило выбросами атмосферу и перегрело ее парниковыми газами. Катастрофы в Чернобыле и на Фукусиме-1 дискредитировали ядерную энергетику.

Что же помешало освоить столь перспективный и безопасный процесс термоядерного синтеза, который навсегда мог бы снять проблему обеспечения человечества энергией?

Изначально было понятно, что для протекания реакции необходимо сблизить ядра водорода настолько плотно, чтоб ядерные силы могли образовать ядро нового элемента - гелия с выделением значительного количества энергии. Но ядра водорода отталкиваются друг от друга электрическими силами. Оценка температур и давлений, при которых начинается управляемая термоядерная реакция показала, что ни один материал не сможет устоять против подобных температур.

По тем же причинам был отвергнут и чистый дейтерий - изотоп водорода. Потратив миллиарды долларов и десятилетия времени, ученые наконец смогли зажечь термоядерное пламя на очень короткое время. Осталось научиться удерживать плазму термоядерного синтеза достаточно долго. От компьютерного моделирования необходимо было переходить к строительству реального реактора.

На этом этапе стало понятно, что усилий и средств отдельного государства не хватит для постройки и эксплуатации опытных и опытно-промышленных установок. В рамках международного сотрудничества было решено реализовать проект экспериментального термоядерного реактора стоимостью больше 14 миллиардов долларов.

Но в 1996 году США прекратила свое участие и, соответственно, финансирование проекта. Некоторое время реализация шла за счет средств Канады, Японии и Европы, но до строительства реактора дело так и не дошло.

Второй проект, тоже международный, реализуется во Франции. Длительное удержание плазмы происходит за счет специальной формы магнитного поля - в виде бутылки. Основу этого способа заложили еще советские физики. Первая установка типа «Токамак» должна дать на выходе больше энергии, чем тратится на поджиг и удержание плазмы.

К 2012 году монтаж реактора должны были закончить, но сведений об успешной эксплуатации пока нет. Возможно, экономические потрясения последних лет внесли свои коррективы и в планы ученых.

Трудности с достижением управляемого термоядерного синтеза породил множество спекуляций и ложных сообщений о так называемой «холодной» термоядерной реакции слияния ядер. При том, что никаких физических возможностей или законов до сих пор не нашли, многие исследователи утверждают о ее существовании. Ведь ставки слишком велики: от Нобелевских премий для ученых до геополитического господства государства, овладевшего подобной технологией и получившего доступ к энергетическому изобилию.

Но каждое такое сообщение оказывается преувеличенным или откровенно ложным. Серьезные ученые относятся к существованию подобной реакции со скептицизмом.

Реальные возможности овладения синтезом и начала промышленной эксплуатации термоядерных реакторов отодвигаются на середину 21 века. К этому времени удастся подобрать необходимые материалы и отработать безопасную его эксплуатацию. Поскольку подобные реакторы будут работать с плазмой очень низкой плотности, безопасность термоядерных электростанций будет гораздо выше, чем атомных станций.

Любое нарушение в зоне реакции сразу «затушит» термоядерное пламя. Но пренебрегать мерами безопасности не стоит: единичная мощность реакторов будет настолько велика, что авария даже в контурах отбора тепла может повлечь и жертвы, и загрязнение окружающей среды. Дело осталось за малым: подождать 30-40 лет и увидеть эпоху энергетического изобилия. Если доживем, конечно.

1. Введение

3. Проблемы управления термоядерным синтезом

3.1 Экономические проблемы

3.2 Медицинские проблемы

4. Заключение

5. Список литературы


1. Введение

Проблема управляемого термоядерного синтеза - одна из важнейших задач, стоящих перед человечеством.

Человеческая цивилизация не может существовать, а тем более развиваться без энергии. Все хорошо понимают, что освоенные источники энергии, к сожалению, могут скоро истощиться. По данным Мирового энергетического совета, разведанных запасов углеводородного топлива на Земле осталось на 30 лет.

Сегодня основными источниками энергии служат нефть, газ и уголь.

По оценкам специалистов, запасы этих ископаемых на исходе. Почти не осталось разведанных, годных к освоению месторождений нефти и уже наши внуки могут столкнуться с очень серьезной проблемой нехватки энергии.

Наиболее обеспеченные топливом атомные электростанции могли бы, конечно, еще не одну сотню лет снабжать человечество электроэнергией.

Объект исследования: Проблемыуправляемого термоядерного синтеза.

Предмет исследования: Термоядерный синтез.

Цель исследования: Решить проблему управления термоядерным синтезом;

Задачи исследования:

· Изучить виды термоядерных реакций.

· Рассмотреть все возможные варианты донесения энергии, выделявшийся во время термоядерной реакции, до человека.

· Выдвинуть теорию о преобразования энергии в электричество.

Исходный факт:

Ядерная энергия выделяется при распаде или синтезе атомных ядер. Любая энергия - физическая, химическая, или ядерная проявляется своей способностью выполнять работу, излучать высокую температуру или радиацию. Энергия в любой системе всегда сохраняется, но она может быть передана другой системе или изменена по форме.

Достижению условий управляемого термоядерного синтеза препятствуют несколько основных проблем:

· Во-первых, нужно нагреть газ до очень высокой температуры.

· Во-вторых, необходимо контролировать количество реагирующих ядер в течение достаточно долгого времени.

· В-третьих, количество выделяемой энергии должно быть больше, чем было затрачено для нагревания и ограничения плотности газа.

· Следующая проблема – накопление этой энергии и преобразование её в электричество

2. Термоядерные реакции на Солнце

Что является источником солнечной энергии? Какова природа процессов, в ходе которых производится огромное количество энергии? Сколько времени будет еще светить Солнце?

Первые попытки ответить на эти вопросы были сделаны астрономами в середине ХIX века, после формулирования физиками закона сохранения энергии.

Роберт Майер предположил, что Солнце светит за счет постоянной бомбардировки поверхности метеоритами и метеорными частицами. Эта гипотеза была отвергнута, так как простой расчет показывает, что для поддержания светимости Солнца на современном уровне необходимо, чтобы на него за каждую секунду выпадало 2∙10 15 кг метеорного вещества. За год это составит 6∙10 22 кг, а за время существования Солнца, за 5 миллиардов лет – 3∙10 32 кг. Масса Солнца М = 2∙10 30 кг, поэтому за пять миллиардов лет на Солнце должно было выпасть вещества в 150 раз больше массы Солнца.

Вторая гипотеза была высказана Гельмгольцем и Кельвином также в середине ХIX века. Они предположили, что Солнце излучает за счет сжатия на 60–70 метров ежегодно. Причина сжатия – взаимное притяжение частиц Солнца, именно поэтому данная гипотеза получила название контракционной. Если сделать расчет по данной гипотезе, то возраст Солнца будет не больше 20 миллионов лет, что противоречит современным данным, полученным по анализу радиоактивного распада элементов в геологических образцах земного грунта и грунта Луны.

Третью гипотезу о возможных источниках энергии Солнца высказал Джеймс Джинс в начале ХХ века. Он предположил, что в недрах Солнца содержатся тяжелые радиоактивные элементы, которые самопроизвольно распадаются, при этом излучается энергия. Например, превращение урана в торий и затем в свинец, сопровождается выделением энергии. Последующий анализ этой гипотезы также показал ее несостоятельность; звезда, состоящая из одного урана, не выделяла бы достаточно энергии для обеспечения наблюдаемой светимости Солнца. Кроме того, существуют звезды, по светимости во много раз превосходящие светимость нашей звезды. Маловероятно, что в тех звездах запасы радиоактивного вещества будут также больше.

Самой вероятной гипотезой оказалась гипотеза синтеза элементов в результате ядерных реакций в недрах звезд.

В 1935 году Ханс Бете выдвинул гипотезу, что источником солнечной энергии может быть термоядерная реакция превращения водорода в гелий. Именно за это Бете получил Нобелевскую премию в 1967 году.

Химический состав Солнца примерно такой же, как и у большинства других звезд. Примерно 75 % – это водород, 25 % – гелий и менее 1 % – все другие химические элементы (в основном, углерод, кислород, азот и т.д.). Сразу после рождения Вселенной "тяжелых" элементов не было совсем. Все они, т.е. элементы тяжелее гелия и даже многие альфа-частицы, образовались в ходе "горения" водорода в звездах при термоядерном синтезе. Характерное время жизни звезды типа Солнца десять миллиардов лет.

Основной источник энергии – протон-протонный цикл – очень медленная реакция (характерное время 7,9∙10 9 лет), так как обусловлена слабым взаимодействием. Ее суть состоит в том, что из четырех протонов получается ядро гелия. При этом выделяются пара позитронов и пара нейтрино, а также 26,7 МэВ энергии. Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца. Поскольку при выделении 26,7 МэВ рождается 2 нейтрино, то скорость излучения нейтрино: 1,8∙10 38 нейтрино/с. Прямая проверка этой теории – наблюдение солнечных нейтрино. Нейтрино высоких энергий (борные) регистрируются в хлор-аргонных экспериментах (эксперименты Дэвиса) и устойчиво показывают недостаток нейтрино по сравнению с теоретическим значением для стандартной модели Солнца. Нейтрино низких энергий, возникающие непосредственно в рр-реакции, регистрируются в галлий-германиевых экспериментах (GALLEX в Гран Сассо (Италия – Германия) и SAGE на Баксане (Россия – США)); их также "не хватает".

По некоторым предположениям, если нейтрино имеют отличную от нуля массу покоя, возможны осцилляции (превращения) различных сортов нейтрино (эффект Михеева – Смирнова – Вольфенштейна) (существует три сорта нейтрино: электронное, мюонное и тауонное нейтрино). Т.к. другие нейтрино имеют гораздо меньшие сечения взаимодействия с веществом, чем электронное, наблюдаемый дефицит может быть объяснен, не меняя стандартной модели Солнца, построенной на основе всей совокупности астрономических данных.

Каждую секунду Солнце перерабатывает около 600 миллионов тонн водорода. Запасов ядерного топлива хватит еще на пять миллиардов лет, после чего оно постепенно превратится в белый карлик.

Центральные части Солнца будут сжиматься, разогреваясь, а тепло, передаваемое при этом внешней оболочке, приведет к ее расширению до размеров, чудовищных по сравнению с современными: Солнце расширится настолько, что поглотит Меркурий, Венеру и будет тратить "горючее" в сто раз быстрее, чем в настоящее время. Это приведет к увеличению размеров Солнца; наша звезда станет красным гигантом, размеры которого сравнимы с расстоянием от Земли до Солнца!

Мы, конечно, будем заранее поставлены в известность о таком событии, поскольку переход к новой стадии займет примерно 100–200 миллионов лет. Когда температура центральной части Солнца достигнет 100 000 000 К, начнет сгорать и гелий, превращаясь в тяжёлые элементы, и Солнце вступит в стадию сложных циклов сжатия и расширения. На последней стадии наша звезда потеряет внешнюю оболочку, центральное ядро будет иметь невероятно большую плотность и размеры, как у Земли. Пройдет еще несколько миллиардов лет, и Солнце остынет, превратившись в белый карлик.

3. Проблемы управляемого термоядерного синтеза

Исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция - синтез гелия из дейтерия и трития - миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках (устройство для осуществления реакции термоядерного синтеза в горячей плазме) и стеллараторах (замкнутая магнитная ловушка для удержания высокотемпературной плазмы). Однако есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер - ускоритель на встречных пучках.

Для работы Токамака необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт/ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции Земли, то мировых запасов дейтерия и лития хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.

Кроме слияния дейтерия и лития возможен чисто солнечный термояд, когда соединяются два атома дейтерия. В случае освоения этой реакции энергетические проблемы будут решены сразу и навсегда.

В любом из известных вариантов управляемого термоядерного синтеза (УТС) термоядерные реакции не могут войти в режим неконтролируемого нарастания мощности, следовательно, таким реакторам не присуща внутренняя безопасность.

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.

2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.

В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.

Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин - зафиксировали в лабораторных условиях холодную термоядерную реакцию.

Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.

"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий - изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.

3.1 Экономические проблемы

При создании УТС предполагается, что это будет крупная установка, оснащенная мощными компьютерами. Это будет целый маленький город. Но в случае аварии или поломки оборудования, работа станции будет нарушена.

Это не предусмотрено например в современных проектах АЭС. Считается что главное их построить, а что будет потом не важно.

Но в случае отказа 1 станции много городов останется без электроэнергии. Это можно наблюдать на примере АЭС в Армении. Вывоз радиоактивных отходов стал очень дорог. По требованию зеленых АЭС была закрыта. Население осталось без электроэнергии, оборудование электростанции износилось, а деньги выделенные международными организациями на восстановление были растрачены.

Серьезной экономической проблемой является дезактивация заброшенных производств, где производилась переработка урана. Например "в городе Актау - собственный маленький "чернобыль". Он расположен на территории химико-гидрометаллургического завода (ХГМЗ). Излучение гамма-фона в цехе по переработке урана (ГМЦ) местами достигает 11000 микрорентген в час, средний уровень фона - 200 микрорентген (Обычный естественный фон от 10 до 25 микрорентген в час). После остановки завода здесь вообще не проводилась дезактивация. Значительная часть оборудования, около пятнадцати тысяч тонн, имеет уже неснимаемую радиоактивность. При этом столь опасные предметы хранятся под открытым небом, плохо охраняются и постоянно растаскиваются с территории ХГМЗ.

Поэтому раз не существует вечных производств, в связи с появлением новых технологий УТС может быть закрыта и тогда предметы, металлы c предприятия попадут на рынок и пострадает местное население.

В системе охлаждения УТС будет использоваться вода. Но по данным экологов, если брать статистику по АЭС, вода из этих водоемов не пригодна для питья.

По данным экспертов, водоем полон тяжелых металлов (в частности, тория-232), и в некоторых местах уровень гамма-излучения достигает 50 - 60 микрорентген в час.

То есть сейчас, при строительстве АЭС не предусматриваются средства, которые бы возвращали местность в первоначальное состояние. И после закрытия предприятия никто не знает как захоронить накопившиеся отходы и очистить бывшее предприятие.

3.2 Медицинские проблемы

К вредным воздействиям УТС относится выработка мутантов вирусов и бактерий, вырабатывающих вредные вещества. Особенно это касается вирусов и бактерий, находящихся в теле человека. Появление злокачественных опухолей и заболевания раком, будет скорее всего распространенным заболеванием жителей поселков, живущих рядом с УТС. Жители всегда больше страдают, так как у них нет никаких средств защиты. Дозиметры дороги, а лекарства недоступны. Отходы от УТС будут сбрасывать в реки, стравливать в воздух или закачивать в подземные пласты, что происходит сейчас на АЭС.

Помимо повреждений, проявляющихся вскоре после облучения в больших дозах, ионизирующее излучение вызывает отдаленные последствия. В основном канцерогенез и генетические нарушения, которые могут возникнуть при любых дозах и характере облучения(разовом, хроническом, локальном).

По сообщениям от врачей, которые регистрировали заболевания работников АЭС, сначала идут сердечно сосудистые заболевания(инфаркты), затем рак. Сердечная мышца истончается под действием радиации, становиться дряблой, менее прочной. Встречаются совсем непонятные заболевания. Например отказ работы печени. Но почему это происходит, никто из врачей до сих пор не знает. При попадании радиоактивных веществ при аварии в дыхательные пути врачи вырезают поврежденные ткани легкого и трахеи и инвалид ходит с переносным устройством, для дыхания

4. Заключение

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива – водорода.

В 1991 году впервые удалось получить существенное количество энергии - приблизительно 1.7 миллион ватт в результате управляемого ядерного синтеза в Объединенной европейской лаборатории (Торус). В декабре 1993 года, исследователи в Принстонском университете использовали реактор типа токамак для реакции синтеза, чтобы произвести управляемую ядерную реакцию, выделенная энергия равнялась 5.6 миллионов ватт. Однако, и в реакторе типа токамак и в лаборатории Торус затратили большее количество энергии, чем было получено.

Если получение энергии ядерного синтеза станет практически доступным, то это даст безграничный источник топлива

5. Список литературы

1)Журнал "Новый взгляд" (Физика; Для будущей элиты).

2)Учебник Физики 11 класс.

3)Академия энергетика (аналитика; идеи; проекты).

4) Люди и атомы (Уильям Лоуренс).

5) Элементы вселенной (Сиборг и Вэленс).

6) Советский Энциклопедический Словарь.

7) Энциклопедия Encarta 96.

8) Астрономия- http://www.college.ru./astronomy.

Извлечение ядерной энергии основано на том фундаментальном факте, что ядра химических элементов из середины таблицы Менделеева упакованы плотно, а по краям таблицы, т.е. самые лёгкие и самые тяжёлые ядра – менее плотно. Наиболее плотно упакованы ядра железа и его соседи по периодической системе. Поэтому мы выигрываем энергию в двух случаях: когда мы делим тяжёлые ядра на более мелкие осколки, и когда мы склеиваем лёгкие ядра в более крупные.

Соответственно, энергию можно извлекать двумя способами: в ядерных реакциях деления тяжёлых элементов – урана, плутония, тория или в ядерных реакциях синтеза (слипания) лёгких элементов – водорода, лития, бериллия и их изотопов. В природе, в естественных условиях реализуются оба типа реакций. Реакции синтеза идут во всех звёздах, включая солнце, и являются практически единственным исходным источником энергии на Земле – если не непосредственно через солнечный свет, то опосредованно – через нефть, уголь, газ, воду и ветер. Природная реакция деления имела место на Земле около 2-х миллиардов лет назад на территории нынешнего Габона в Африке: там случайно скопилось много урана в одном месте, и в течение 100 миллионов лет работал природный ядерный реактор! Потом концентрация урана уменьшилась, и природный реактор заглох.

В середине XX века человечество приступило к искусственному освоению гигантской энергии, заключённой в ядрах. Атомная бомба (урановая, плутониевая) «работает» на реакции деления, водородная бомба (которая вовсе не из водорода, но называется так) – на реакции синтеза. В бомбе реакции идут одно мгновение и носят взрывной характер. Можно уменьшить интенсивность ядерных реакций, растянуть их во времени и использовать их разумно в качестве управляемого источника энергии. В мире построены многие сотни ядерных реакторов разного типа, где идут реакции деления, и «сжигаются» тяжёлые элементы – уран, торий или плутоний. Возникла также задача сделать управляемой реакцию синтеза, чтобы и она служила источником энергии.

На осуществление управляемой реакции деления человечеству потребовалось лишь несколько лет. Однако управляемая реакция синтеза оказалась намного более трудной задачей, с которой до конца ещё не справились. Дело в том, что для того, чтобы два лёгких ядра, например, дейтерия и трития, могли слиться, им надо преодолеть большой потенциальный барьер.

Наиболее прямолинейный способ добиться этого – разогнать два лёгких ядра до высокой энергии, так чтобы они сами проскочили барьер. Это подразумевает, что смесь дейтерия и трития должна быть разогрета до очень высокой температуры – порядка 100 млн. градусов! При такой температуре смесь, разумеется, ионизована, т.е. представляет собой плазму. Плазму удерживают в сосуде в форме бублика магнитным полем сложной конфигурации и разогревают. Эта установка, изобретение И.Е.Тамма,А.Д.Сахарова, Л.А.Арцимовича и др., называется «токамак». Главная проблема здесь – добиться стабильности очень горячей плазмы, чтобы она не «высадилась на стенки» сосуда. Это требует больших размеров установки и соответственно очень сильных магнитных полей в большом объёме. Принципиальных трудностей здесь почти нет, но есть множество технических проблем, которые пока не решены.

Недавно начали строить международную установку ИТЭРв районе Экс-ан-Прованса во Франции. В проекте активно участвует и Россия, внося 1/11 финансирования. К 2018 году международный токамак должен заработать и продемонстрировать принципиальную возможность генерации энергии за счёт термоядерной реакции синтеза

где d – ядро дейтерия (один протон и один нейтрон), t – ядро трития (один протон и два нейтрона), He – ядро гелия (два протона и два нейтрона), n – нейтрон, рождающийся в результате реакции, а «17.6 МэВ» – энергияв мега-электрон-вольтах, выделяющаяся в единичной реакции. Эта энергия в десятки миллионов раз больше той, которая выделяется при химических реакциях, например при горении органического топлива.

Здесь «топливом», как мы видим, служит смесь дейтерия и трития. Дейтерий («тяжёлая вода») содержится в виде малой примеси в любой воде, и технически выделить его несложно. Запасы его, действительно, не ограничены. Тритий же в природе не встречается, так как он радиоактивен и распадается за 12 лет. Стандартный способ получения трития – из лития путём бомбардировки его нейтронами. Предполагается, что в ИТЭРе будет нужна только малая «затравка» трития для запуска реакции, а дальше он будет нарабатываться сам собой за счёт бомбардировки нейтронами из реакции (1) литиевого «бланкета», т.е. «одеяла», оболочки токамака. Поэтому фактически топливом служит литий. В земной коре его тоже много, но нельзя сказать, что лития неограниченное количество: если бы вся энергия в мире производилась сегодня за счёт реакции (1), разведанных месторождений необходимого для этого лития хватило бы на 1000 лет. Примерно на столько же лет хватит разведанного урана и тория, если производить энергию в обычных ядерных котлах .

Так или иначе, самоподдерживающуюся термоядерную реакцию синтеза (1) на современном уровне науки и техники реализовать, по-видимому, можно, и есть надежда, что это будет успешно продемонстрировано лет через десять на установке ИТЭР. Это очень интересный проект и в научном, и в технологическом плане, и хорошо, что наша страна участвует в нём. Тем более, что это тот не слишком частый случай, когда Россия не только находится на мировом уровне, но во многом и задаёт этот мировой уровень.

Вопрос в другом – может ли «термояд» служить основой для промышленного получения «чистой» и «неограниченной» энергии, как утверждают энтузиасты проекта. Ответ, по-видимому, отрицательный, и вот почему.

Дело в том, что нейтроны, образующиеся при синтезе (1), сами по себе гораздо ценнее, чем та энергия, которая при этом выделяется.

Но чайники греть на нейтронах – разбой,

И здесь мы дадим расточителям бой:

Укроем активную зону

Урановым бланкетом – вона!

(из «Баллады о мюонном катализе», Ю.Докшицер и Д.Дьяконов, 1978 )

Действительно, если обложить поверхность токамака толстым «бланкетом» из самого обыкновенного природного урана-238, то под действием быстрого нейтрона из реакции (1), ядро урана расщепляется с выделением дополнительной энергии около 200 МэВ. Обратим внимание на числа:

Реакция синтеза (1) даёт энергию 17,6 МэВ в токомаке, плюс нейтрон

Последующая реакция деления в урановом бланкете даёт около 200 МэВ.

Таким образом, если уж мы построили сложную термоядерную установку, то сравнительно простая добавка к нему в виде уранового бланкета позволяет увеличить производство энергии в 12 раз!

Примечательно, что уран-238 в бланкете не обязан быть очень чистым или обогащённым: наоборот, годится и обеднённый уран, которого остаётся много в отвалах после обогащения, и даже отработанное ядерное топливо из обычных тепловых атомных станций. Вместо того, чтобы хоронить отработанное топливо, можно с большой пользой употребить его в урановом бланкете.

На самом деле, эффективность увеличивается ещё больше, если учесть, что быстрый нейтрон, попадая в урановый бланкет, вызывает много разнообразных реакций, в результате которых, помимо выделения 200 МэВ энергии, образуется ещё несколько ядер плутония. Таким образом, урановый бланкет служит ещё и мощным производителем нового ядерного топлива. Плутоний можно потом «сжечь» на обычной тепловой атомной станции, с эффективным выделением ещё примерно 340 МэВ на каждое ядро плутония.

Даже с учётом того, что один из дополнительных нейтронов надо использовать на воспроизводство топливного трития, добавление к токамаку уранового бланкета и нескольких обычных атомных станций, которые «питаются» плутонием из этого бланкета, позволяет увеличить энергоэффективность токамака по меньшей мере раз в двадцать пять , а по некоторым оценкам – в пятьдесят раз! Это всё – сравнительно простая и отработанная технология. Ясно, что ни один здравомыслящий человек, ни одно правительство, ни одна коммерческая организация не упустит такой возможности многократно повысить эффективность производства энергии.

Если дело дойдёт до промышленного производства, то термоядерный синтез на токомаке будет по существу всего лишь «затравкой», всего лишь источником драгоценных нейтронов, а 96% энергии всё равно будет производиться в реакциях деления, и основным топливом соответственно будет уран-238. «Чистого» термояда, таким образом, не будет никогда.

Более того, если наиболее сложная, дорогостоящая и наименее отработанная часть этой цепочки – термоядерный синтез – производит менее 4% от окончательной мощности, то возникает естественный вопрос, а нужно ли вообще это звено? Может быть, существуют более дешёвые и эффективные источники нейтронов?

Возможно, что в недалёком будущем будет придумано что-то совсем новое, но уже сейчас имеются наработки, как вместо термояда использовать другие источники нейтронов, чтобы беспрепятственно «сжигать» природный уран-238 или торий. Имеются в виду

Реакторы-размножители (бридеры) на быстрых нейтронах

(2-ой пункт недавней саровской программы)

Электроядерный бридинг

Ядерный синтез при невысокой температуре с помощью мюонного катализа.

Каждый метод имеет свои сложности и свои достоинства, и каждый достоин отдельного рассказа. Отдельного разговора заслуживает также ядерный цикл, основанный на тории, что особенно актуально для нас, поскольку в России тория больше, чем урана. Индия, где похожая ситуация, уже выбрала торий как основу своей будущей энергетики. Многие люди и в нашей стране склоняются к тому, что ториевый цикл – наиболее экономичный и безопасный метод производства энергии практически в неограниченном количестве.

Сейчас Россия стоит на распутье: надо выбрать стратегию развития энергетики на много десятилетий вперёд. Для выбора оптимальной стратегии необходимо открытое и критическое обсуждение научным и инженерным сообществом всех аспектов программы.

Эта заметка посвящается памяти Юрия Викторовича Петрова (1928-2007), замечательного учёного и человека, доктора физ.-мат. наук, заведующего сектором Петербургского института ядерной физики РАН, который научил автора тому, что здесь написано .

Ю.В.Петров, Гибридные ядерные реакторы и мюонный катализ , в сборнике «Ядерная и термоядерная энергетика будущего», М., Энергоатомиздат (1987), с. 172.

С.С.Герштейн, Ю.В.Петров и Л.И.Пономарёв, Мюонный катализ и ядерный бридинг, Успехи физических наук, т. 160, с. 3 (1990).

На снимке: Ю.В Петров (справа) и лауреат Нобелевской премии по физике Ж.‘т Хофт, фото Д.Дьяконова (1998).

Область физики плазмы расцвела из желания закупорить звезду в бутылке. За последние несколько десятилетий эта область разрослась в бесчисленных направлениях, от астрофизики до космической погоды и нанотехнологий.

По мере того, как росло наше общее понимание плазмы, росли и наши возможности поддержания условий синтеза в течение больше чем секунды. В начале этого года новый сверхпроводниковый реактор синтеза в Китае смог удержать плазму температурой в 50 миллионов градусов по Цельсию в течение рекордных 102 секунд. Wendelstein X-7 Stellarator, который заработал в Германии впервые прошлой осенью, как ожидается, сможет побить этот рекорд и удержать плазму до 30 минут за раз.

Недавнее обновление NSTX-U выглядит скромным в сравнении с этими монстрами: теперь эксперимент может удерживать плазму в течение пяти секунд вместо одной. Но и это тоже является важной вехой.

«Создание термоядерной плазмы, которая живет всего пять секунд, может показаться не очень длительным процессом, но в физике плазмы пять секунд можно сравнить с ее физикой в стабильном состоянии», - говорит Майерс, ссылаясь на условия, при которых плазма стабильна. Конечная цель заключается в достижении стабильного состояния «горящей плазмы», которая может проводить синтез сама по себе за счет небольшого ввода энергии извне. Ни один эксперимент пока такого не добился.

NSTX-U позволит принстонским исследователям заполнить некоторые пробелы между тем, что известно из физики плазмы сейчас, и тем, что будет необходимо для создания опытно-промышленной установки, способной достичь устойчивого состояния горения и генерации чистой электроэнергии.

С одной стороны, чтобы найти лучшие материалы для удержания, нам нужно лучше понять, что происходит между термоядерной плазмой и стенками реактора. В Принстоне изучают возможность замены стенок своего реактора (из угольного графита) на «стенку» из жидкого лития с целью снижения долгосрочной коррозии.

Ко всему прочему, ученые полагают, что если синтез поможет в борьбе с глобальным потеплением, им нужно поторапливаться. NSTX-U поможет физикам решить, стоит ли продолжать развивать дизайн сферического токамака. Большинство реакторов типа токамак в меньшей степени похожи на яблоко по форме и в большей - на пончик, бублик, тор. Необычная форма сферического тора позволяет более эффективно использовать магнитное поле своих катушек.

«В длительной перспективе мы хотели бы выяснить, как оптимизировать конфигурацию одной из этих машин, - говорит Мартин Гринвальд, замдиректора Центра наук о плазме и синтезе в . - Для этого вам нужно знать, как производительность машины зависит от того, что поддается вашему контролю, вроде формы».

Майерс ненавидит оценивать, насколько мы далеки от коммерчески возможной термоядерной энергии, и его можно понять. В конце концов, десятки лет неизбывного оптимизма нанесли серьезный вред репутации этой области и укрепили мысли о том, что синтез - это несбыточная мечта. Со всеми последствиями для финансирования.

Для программы синтеза MIT стало серьезным ударом то, что федералы предоставили поддержку токамака Alcator C-Mid, который производит одно из мощнейших магнитных полей и демонстрирует синтезируемую плазму при высочайшем давлении. Большинство ожидаемых исследований NSTX-U будут зависеть от дальнейшей поддержки на федеральном уровне, которая, по словам Майерса, оказывается «через год».

Всем приходится осторожно тратить доллары, выделяемые на исследования, а некоторые программы синтеза уже сожрали невероятные суммы. Взять, например, ИТЭР, огромный сверхпроводящий реактор синтеза, который в настоящее время строится во Франции. Когда в 2005 году началось международной сотрудничество, оно было заявлено как проект на 5 миллиардов долларов и 10 лет. После нескольких лет неудач ценник вырос до 40 миллиардов долларов. По самым оптимистичным оценкам, объект будет завершен к 2030 году.

И там где ИТЭР, похоже, будет разбухать как опухоль, пока не исчерпает ресурсы и не убьет хозяина, урезанная программа синтеза в MIT показывает, как можно сделать все с гораздо меньшим бюджетом. Прошлым летом команда аспирантов MIT представила планы ARC, термоядерного реактора с низким уровнем затрат, который будет использовать новые высокотемпературные сверхпроводящие материалы для генерации такого же объема энергии, как и ИТЭР, только с гораздо меньшим устройством.

«Проблема синтеза в том, чтобы найти технический путь, который сделает его экономически привлекательным - это-то мы и планируем сделать в ближайшее время, - говорит Гринвальд, отмечая, что концепция ARC в настоящее время проводится в рамках Energy Initiative в MIT. - Мы считаем, что если синтез будет иметь значение для глобального потепления, нам нужно двигаться быстрее».

«Синтез обещает быть основным источником энергии - это, по сути, наша конечная цель», - говорит Роберт Рознер, плазмофизик из Университета Чикаго и соучредитель Института энергетической политики при нем. «В то же время есть важный вопрос: сколько мы готовы потратить прямо сейчас. Если мы снизим финансирование до той точки, когда следующее поколение умных детишек вообще не захочет этим заниматься, мы можем вообще выйти из этого дела».

С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.

1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.

2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.

Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.

Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.

Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.

В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.

Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин - зафиксировали в лабораторных условиях холодную термоядерную реакцию.

Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.

"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий - изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.

3.1 Экономические проблемы

При создании УТС предполагается, что это будет крупная установка, оснащенная мощными компьютерами. Это будет целый маленький город. Но в случае аварии или поломки оборудования, работа станции будет нарушена.

Это не предусмотрено например в современных проектах АЭС. Считается что главное их построить, а что будет потом не важно.

Но в случае отказа 1 станции много городов останется без электроэнергии. Это можно наблюдать на примере АЭС в Армении. Вывоз радиоактивных отходов стал очень дорог. По требованию зеленых АЭС была закрыта. Население осталось без электроэнергии, оборудование электростанции износилось, а деньги выделенные международными организациями на восстановление были растрачены.

Серьезной экономической проблемой является дезактивация заброшенных производств, где производилась переработка урана. Например "в городе Актау - собственный маленький "чернобыль". Он расположен на территории химико-гидрометаллургического завода (ХГМЗ). Излучение гамма-фона в цехе по переработке урана (ГМЦ) местами достигает 11000 микрорентген в час, средний уровень фона - 200 микрорентген (Обычный естественный фон от 10 до 25 микрорентген в час). После остановки завода здесь вообще не проводилась дезактивация. Значительная часть оборудования, около пятнадцати тысяч тонн, имеет уже неснимаемую радиоактивность. При этом столь опасные предметы хранятся под открытым небом, плохо охраняются и постоянно растаскиваются с территории ХГМЗ.

Поэтому раз не существует вечных производств, в связи с появлением новых технологий УТС может быть закрыта и тогда предметы, металлы c предприятия попадут на рынок и пострадает местное население.

В системе охлаждения УТС будет использоваться вода. Но по данным экологов, если брать статистику по АЭС, вода из этих водоемов не пригодна для питья.

По данным экспертов, водоем полон тяжелых металлов (в частности, тория-232), и в некоторых местах уровень гамма-излучения достигает 50 - 60 микрорентген в час.

То есть сейчас, при строительстве АЭС не предусматриваются средства, которые бы возвращали местность в первоначальное состояние. И после закрытия предприятия никто не знает как захоронить накопившиеся отходы и очистить бывшее предприятие.

3.2 Медицинские проблемы

К вредным воздействиям УТС относится выработка мутантов вирусов и бактерий, вырабатывающих вредные вещества. Особенно это касается вирусов и бактерий, находящихся в теле человека. Появление злокачественных опухолей и заболевания раком, будет скорее всего распространенным заболеванием жителей поселков, живущих рядом с УТС. Жители всегда больше страдают, так как у них нет никаких средств защиты. Дозиметры дороги, а лекарства недоступны. Отходы от УТС будут сбрасывать в реки, стравливать в воздух или закачивать в подземные пласты, что происходит сейчас на АЭС.

Помимо повреждений, проявляющихся вскоре после облучения в больших дозах, ионизирующее излучение вызывает отдаленные последствия. В основном канцерогенез и генетические нарушения, которые могут возникнуть при любых дозах и характере облучения(разовом, хроническом, локальном).

По сообщениям от врачей, которые регистрировали заболевания работников АЭС, сначала идут сердечно сосудистые заболевания(инфаркты), затем рак. Сердечная мышца истончается под действием радиации, становиться дряблой, менее прочной. Встречаются совсем непонятные заболевания. Например отказ работы печени. Но почему это происходит, никто из врачей до сих пор не знает. При попадании радиоактивных веществ при аварии в дыхательные пути врачи вырезают поврежденные ткани легкого и трахеи и инвалид ходит с переносным устройством, для дыхания

4. Заключение

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива – водорода.

В 1991 году впервые удалось получить существенное количество энергии - приблизительно 1.7 миллион ватт в результате управляемого ядерного синтеза в Объединенной европейской лаборатории (Торус). В декабре 1993 года, исследователи в Принстонском университете использовали реактор типа токамак для реакции синтеза, чтобы произвести управляемую ядерную реакцию, выделенная энергия равнялась 5.6 миллионов ватт. Однако, и в реакторе типа токамак и в лаборатории Торус затратили большее количество энергии, чем было получено.

Если получение энергии ядерного синтеза станет практически доступным, то это даст безграничный источник топлива

5. Список литературы

1)Журнал "Новый взгляд" (Физика; Для будущей элиты).

2)Учебник Физики 11 класс.

3)Академия энергетика (аналитика; идеи; проекты).

4) Люди и атомы (Уильям Лоуренс).

5) Элементы вселенной (Сиборг и Вэленс).

6) Советский Энциклопедический Словарь.

7) Энциклопедия Encarta 96.

8) Астрономия- http://www.college.ru./astronomy.